
Choosing Symbolic Constants Over

Integer Variables in Source Code

Roy Vanegas
Interactive Telecommunications Program

New York University
r.o.y@nyu.edu

March 6, 2007

Using symbolic constants 1 in place of integer variables makes source code
easier to read and creates programs that require less memory. The naming
convention of using all capitals in the declarations of constants, such as LED vs
led, establishes a clear distinction between constants and variables. The former
are defined as such:

#define name replacement_text

When name is encountered in the compile process, it is replaced by
replacement text. Consider the following Arduino code fragment, which uses
a constant:

#define LED 13

int loopCount = 0;

void setup()
{

pinMode(LED, OUTPUT);
}

void loop()
{

digitalWrite(LED, HIGH);
delay(1000);
digitalWrite(LED, LOW);
delay(1000);
++loopCount;

}

1I will refer to symbolic constants as simply constants throughout this paper.

1

Now consider its analog, using a variable:

int ledPin = 13;

void setup()
{

pinMode(ledPin, OUTPUT);
}

void loop()
{

digitalWrite(ledPin, HIGH);
delay(1000);
digitalWrite(ledPin, LOW);
delay(1000);

}

In the first program, every occurrence of LED is replaced by 13; memory is not
set aside for it. (HIGH, LOW, and OUTPUT are “pre-defined constants” endemic
to the Arduino language 2.) The capitals indicate that LED is a constant whose
value will not change throughout the program, distinguishing it from a variable3

such as loopCount, whose value does change in the program.
In the second code fragment, the value assigned to variable ledPin on the

first line remains unchanged throughout the program. However, it takes an
integer’s worth of memory unnecessarily. (An integer is 4 bytes in Java. On a
machine with 1GB of RAM, that is negligible; on an Arduino with 8K or 16K
of RAM, it’s considerable.)

Another case for the constant: code debugging. Using constants in place of
integers where values don’t change protect against accidentally modifying the
constants’ value. For instance, if the second program contained hundreds of
lines of source code, and a programmer had modified the program somewhere
deep in the code tree, he or she could have accidentally modified the ledPin
variable unknowingly to another value. The compiler would not have thrown
an error, leading to logic errors. Employing a constant in its place, however,
would have generated a compiler error4, and thus would have guarded against
accidentally changing that constant’s value.

In closing, if you are using variables in your Arduino source code where their
values remain unchanged throughout your program, employ constants in their
place to conserve memory and enhance readability.

2http://www.arduino.cc/en/Reference/HomePage
3The definition of a variable is that it’s value will change, hence the title variable.
4A compiler error is thrown when the grammar of a language is defeated, causing the

compiler to halt the final build of the executable or binary. In contrast, a logic error is one
that defeats logic, not grammar. Consequently, the compiler completes the process of building
the executable or binary, but yields unexpected results in logic.

2

Acknowledgements

Many thanks to Tom Igoe and Nick Hasty for edits and suggestions during the
revision process of this paper.

3

